ЗАДАЧИ

к коллоквиуму по математическому анализу в группах 107 - 112 первого курса второго потока 2011-2012 учебный год Лектор профессор В.А.Зорич

ИНТЕГРАЛЬНОЕ ИСЧИСЛЕНИЕ И НАЧАЛА ДИФФЕРЕНЦИАЛЬНОГО ИСЧИСЛЕНИЯ ФУНКЦИЙ МНОГИХ ПЕРЕМЕННЫХ

- **1.** Зная неравенства Гёльдера, Минковского и И
енсена для сумм, получите соответствующие перавенства для интегралов.
- **2.** Вычислите интеграл $\int_{0}^{1} e^{-x^2} dx$ с относительной погрешностью в пределах 10%.
- 3. Функция $\operatorname{erf}(x) = \frac{1}{\sqrt{\pi}} \int_{-x}^{x} e^{-t^2} dt$, называемая *интегралом веро-ятности ошибок*, имеет пределом 1 при $x \to +\infty$. Изобразите график этой функции и найдите ее производную. Покажите, что при $x \to +\infty$

$$\operatorname{erf}(x) = 1 - \frac{2}{\sqrt{\pi}}e^{-x^2} \left(\frac{1}{2x} - \frac{1}{2^2x^3} + \frac{1 \cdot 3}{2^3x^5} - \frac{1 \cdot 3 \cdot 5}{2^4x^7} + o\left(\frac{1}{x^7}\right) \right).$$

Как продолжить эту асимптотическую формулу до ряда? Сходится ли этот ряд хотя бы при каком-то значении $x \in \mathbb{R}$?

- **4.** Зависит ли длина пути от закона движения (от параметризации)?
- **5.** Вы держите один конец резинового шнура длиной $1 \, \mathrm{km.}$ От второго его конца, который закреплен, к вам со скоростью $1 \, \mathrm{cm/c}$ ползет жук. Каждый раз, как только он проползает $1 \, \mathrm{cm}$, вы удлиняете резинку на $1 \, \mathrm{km.}$ Доползет ли жук до вашей руки? Если да, то приблизительно сколько ему на это потребуется времени? (Задача Л. Б. Окуня, предложенная им А. Д. Сахарову.)
- 6. Подсчитайте работу по перемещению массы в гравитационном поле Земли и покажите, что эта работа зависит только от уровней высот исходного и конечного положений. Найдите для Земли работу выхода из ее гравитационного поля и соответствующую (вторую) космическую скорость.

- 7. На примере маятника и двойного маятника поясните, как на множестве соответствующих конфигураций можно ввести локальные координаты и окрестности и как при этом возникает естественная топология, превращающая его в конфигурационное пространство механической системы. Можно ли метризовать это пространство в рассмотренных случаях?
 - **8.** Является ли компактом единичная сфера в \mathbb{R}^n , в \mathbb{R}_0^∞ , в C[a,b]?
- 9. Подмножество данного множества называется его ε -сетью, если любая точка множества находится на расстоянии меньшем чем ε от какой-либо точки этого подмножества. Обозначим через $N(\varepsilon)$ наименьшее возможное число точек в ε -сети данного множества. Оцените ε -энтропию $\log_2 N(\varepsilon)$ отрезка, квадрата, куба и ограниченной области в пространстве \mathbb{R}^n . Дает ли величина $\frac{\log_2 N(\varepsilon)}{\log_2(1/\varepsilon)}$ при $\varepsilon \to 0$ представление о размерности рассматриваемого множества? Проверьте, что эта энтропийная размерность стандартного канторова подмножества отрезка [0,1] равна $\log_3 2$.
- 10. На поверхности единичной сферы S в \mathbb{R}^3 температура T как функция точки меняется непрерывно. Обязаны ли на сфере быть точки минимума и максимума температуры? При наличии точек с двумя фиксированными значениями температуры, должны ли быть точки и с промежуточными ее значениями? Что из этого верно в случае, когда единичная сфера S берется в пространстве C[a,b], а температура в точке $f \in S$ выражается в виде

$$T(f) = \left(\int_{a}^{b} |f|(x) dx\right)^{-1}?$$

- **11.** а) Взяв 1,5 в качестве исходного приближения для $\sqrt{2}$, проведите две итерации по методу Ньютона и посмотрите, сколько верных знаков получилось на каждом из двух шагов.
- b) Найдите итерационным процессом функцию f, удовлетворяющую уравнению

$$f(x) = x + \int_{0}^{x} f(t) dt.$$

12. Локальная линеаризация; рассмотрите и продемонстрируйте ее на следующих примерах: мгновенная скорость и перемещение; упрощение уравнения движения при малых колебаниях маятника; вычисление линейных поправок к значениям величин A^{-1} , $\exp(E)$,

- $\det(E), < a, b >$ при малом изменении аргументов (здесь A обратимая, E единичная матрицы; a, b векторы; $< \cdot, \cdot >$ скалярное произведение).
- **13.** а) Какова относительная погрешность $\delta = \frac{|\Delta f|}{|f|}$ при вычислении значения функции f(x,y,z) в точке (x,y,z), координаты которой даны с абсолютными погрешностями Δx , Δy , Δz соответственно?
- b) Какова относительная ошибка в вычислении объема комнаты, размеры которой таковы: длина $x=5\pm0.05\,\mathrm{m}$, ширина $y=4\pm0.04\,\mathrm{m}$, высота $z=3\pm0.03\,\mathrm{m}$?
- с) Верно ли, что относительная погрешность значения линейной функции совпадает с относительной погрешностью значения ее аргумента?
- d) Верно ли, что дифференциал линейной функции совпадает с ней самой?
- е) Верно ли, что для линейной функции f справедливо соотношение f' = f?
- **14.** а) Одна из частных производных функции двух переменных, заданной в круге, равна нулю во всех точках круга. Значит ли это, что функция не зависит от соответствующей переменной в этом круге?
- b) Изменится ли ответ, если вместо круга взять произвольную выпуклую область?
 - с) А если взять вообще произвольную область?
- d) Пусть x = x(t) закон движения точки в плоскости (или в \mathbb{R}^n) в промежутке времени $t \in [a,b]$; $\mathbf{v}(t)$ ее скорость как функция времени, а $C = \text{conv}\{\mathbf{v}(t) \mid t \in [a,b]\}$ наименьшее выпуклое множество, содержащее все векторы $\mathbf{v}(t)$ (называемое обычно выпуклой оболочкой того множества, на которое оболочка натягивается). Покажите, что в C найдется такой вектор \mathbf{v} , что $x(b) x(a) = \mathbf{v} \cdot (b a)$.
- **15.** а) Пусть F(x,y,z)=0. Верно ли, что $\frac{\partial z}{\partial y}\cdot\frac{\partial y}{\partial x}\cdot\frac{\partial x}{\partial z}=-1$? Проверьте это на зависимости $\frac{xy}{z}-1=0$ (соответствующей уравнению Клапейрона $\frac{PV}{T}=R$ состояния идеального газа).
 - b) Пусть теперь F(x,y)=0. Верно ли, что $\frac{\partial y}{\partial x}\cdot\frac{\partial x}{\partial y}=1$?
 - с) Что можно утверждать в общем случае зависимости $F(x_1, \ldots, x_n) = 0$?
- d) Как, зная первые несколько членов тейлоровского разложения функции F(x,y) в окрестности точки (x_0,y_0) , где $F(x_0,y_0)=0$, а $F'_y(x_0,y_0)$ обратима, найти первые несколько членов тейлоровского

разложения неявной функции y = f(x), определяемой в окрестности (x_0, y_0) уравнением F(x, y) = 0?

- **16.** а) Проверьте, что плоскость, касательная к эллипсоиду $\frac{x^2}{a^2}+\frac{y^2}{b^2}+\frac{z^2}{c^2}=1$ в точке (x_0,y_0,z_0) , может быть задана уравнением $\frac{xx_0}{a^2}+\frac{yy_0}{b^2}+\frac{zz_0}{c^2}=1$.
- b) Точка $P(t)=\left(\frac{a}{\sqrt{3}},\frac{b}{\sqrt{3}},\frac{c}{\sqrt{3}}\right)\cdot t$ в момент времени t=1 стартовала с эллипсоида $\frac{x^2}{a^2}+\frac{y^2}{b^2}+\frac{z^2}{c^2}=1.$ Пусть p(t) точка того же эллипсоида, ближайшая к P(t) в момент времени t. Найдите предельное положение точки p(t) при $t\to +\infty.$
- 17. а) В плоскости \mathbb{R}^2 с декартовыми координатами (x,y) постройте линии уровня функции f(x,y)=xy и кривую $S=\{(x,y)\in\mathbb{R}^2\mid x^2+y^2=1\}$. Используя полученную картинку, проведите полное исследование задачи об экстремуме функции $f|_S$ ограничения f на окружность S.
- b) Какой физический смысл имеют множители Лагранжа в методе Лагранжа отыскания условного экстремума, когда ищется положение равновесия материальной точки в поле тяжести, если движение точки стеснено идеальными связями (вида $F_1(x,y,z)=0$, $F_2(x,y,z)=0$)?
- **18.** Если в векторном пространстве V имеется невырожденная билинейная форма B(x,y), то каждой линейной функции $g^* \in V^*$ на этом пространстве отвечает единственный вектор g, такой, что $q^*(v) = B(q,v)$ для любого вектора $v \in V$.
- а) Проверьте, что если $V = \mathbb{R}^n$, $B(x,y) = b_{ij}x^ix^j$, $g^*v = g_iv^i$, то вектор g имеет координаты $g^j = b^{ij}g_i$, где (b^{ij}) матрица, обратная матрице (b_{ij}) .

Чаще всего в качестве билинейной формы $B(\cdot,\cdot)$ выступает стандартное симметричное скалярное произведение $\langle\cdot,\cdot\rangle$ в евклидовой геометрии или кососкалярное произведение $\omega(\cdot,\cdot)$ (когда форма B кососимметрична) в симплектической геометрии.

- b) Пусть $B(v_1,v_2)=\left|\begin{array}{cc} v_1^1 & v_1^2 \\ v_2^1 & v_2^2 \end{array}\right|$ ориентированная площадь параллелограмма, натянутого на векторы $v_1,v_2\in\mathbb{R}^2$. Найдите вектор $g=(g^1,g^2)$, отвечающий относительно B линейной функции $g^*=(g_1,g_2)$.
- с) Вектор, соответствующий дифференциалу функции $f: \mathbb{R}^n \to \mathbb{R}$ в точке x относительно скалярного произведения \langle , \rangle евклидова пространства \mathbb{R}^n , как известно, называется градиентом функции f в этой точке и обозначается grad f(x). Итак, $df(x)v =: \langle \operatorname{grad} f(x), v \rangle$ для любого приложенного к x вектора $v \in T_x \mathbb{R}^n \sim \mathbb{R}^n$.

Значит,

$$f'(x)v = \frac{\partial f}{\partial x^1}(x)v^1 + \dots + \frac{\partial f}{\partial x^n}(x)v^n = \langle \operatorname{grad} f(x), v \rangle = |\operatorname{grad} f(x)||v|\cos \varphi.$$

- Убедитесь, что в стандартном ортонормированном базисе, т.е. в декартовых координатах, grad $f(x) = \left(\frac{\partial f}{\partial x^1}, \dots, \frac{\partial f}{\partial x^n}\right)(x)$
- Убедитесь, что скорость роста функции f при движении из точки x с единичной скоростью максимальна, когда направление движения совпадает с направлением градиента функции в этой точке, и равна $|\operatorname{grad} f(x)|$. При движении в направлении, перпендикулярном вектору $\operatorname{grad} f(x)$, функция не меняется.
- Как изменятся координаты вектора grad f(x), если в \mathbb{R}^2 вместо ортонормированного базиса (e_1, e_2) , взять ортогональный базис $(\tilde{e}_1, \tilde{e}_2) = (\lambda_1 e_1, \lambda_2 e_2)$?
 - Как вычислять grad f в полярных координатах? Ответ $\left(\frac{\partial f}{\partial r}, \frac{1}{r} \frac{\partial f}{\partial \varphi}\right)$.
- d) Выше в упражнении b) была рассмотрена кососимметрическая форма $B(v_1, v_2)$ ориентированной площади параллелограмма в \mathbb{R}^2 .

Если вектор, отвечающий df(x) относительно симметричной формы \langle , \rangle называют градиентом $\operatorname{grad} f(x)$, то вектор, отвечающий df(x) относительно кососимметричной формы B называют косым градиентом и обозначают $\operatorname{sgrad} f(x)$ (от английского "skew" — косой). Запишите $\operatorname{grad} f(x)$ и $\operatorname{sgrad} f(x)$ в декартовых координатах \mathbb{R}^2 .

- **19.** а) Покажите, что в \mathbb{R}^3 (и вообще в \mathbb{R}^{2n+1}) нет невырожденной кососимметрической билинейной формы.
- b) В ориентированном \mathbb{R}^2 , как мы видели, есть невырожденная кососимметрическая билинейная форма (ориентированная площадь параллелограмма). В \mathbb{R}^{2n} с координатами $(x^1,\ldots,x^n,\ldots,x^{2n})=(p^1,\ldots,p^n,q^1,\ldots,q^n)$ такая билинейная форма ω тоже есть: если $v_i=(p_i^1,\ldots,p_i^n,q_i^1,\ldots,q_i^n)$ (i=1,2), то

$$\omega(v_1, v_2) = \begin{vmatrix} p_1^1 & q_1^1 \\ p_2^1 & q_2^1 \end{vmatrix} + \dots + \begin{vmatrix} p_1^n & q_1^n \\ p_2^n & q_2^n \end{vmatrix}.$$

Т.е. $\omega(v_1, v_2)$ — это сумма ориентированных площадей проекций натянутого на v_1, v_2 параллелограмма в координатные плоскости (p^j, q^j) $(j = 1, \ldots, n)$.

- Пусть g^* линейная функция в \mathbb{R}^{2n} , заданная своими коэффициентами $g^* = (p_1, \dots, p_n, q_1, \dots, q_n)$. Найдите координаты вектора g, сопоставляемого функции g^* посредством формы ω .
- Дифференциалу функции $f: \mathbb{R}^{2n} \to \mathbb{R}$ в точке $x \in \mathbb{R}^{2n}$ посредством кососимметрической формы ω сопоставляется вектор, называемый, как уже было сказано, косым градиентом функции f в этой

точке и обозначаемый sgrad f(x). Найдите выражение sgrad f(x) в канонических декартовых координатах пространства \mathbb{R}^{2n} .

- Найдите скалярное произведение $\langle \operatorname{grad} f(x), \operatorname{sgrad} f(x) \rangle$.
- \bullet Покажите, что вектор sgrad f(x) направлен вдоль поверхности уровня функции f.
- Закон движения x = x(t) точки в пространстве \mathbb{R}^{2n} таков, что $\dot{x}(t) = \operatorname{sgrad} f(x(t))$. Покажите, что $f(x(t)) = \operatorname{const.}$
- Запишите уравнение $\dot{x} = \operatorname{sgrad} f(x)$ в канонических обозначениях $(p^1, \dots, p^n, q^1, \dots, q^n)$ для координат и H = H(p,q) для функции f. Полученная система, называемая системой уравнений Гамильтона, является одним из центральных объектов механики.
 - 20. Канонические переменные и система уравнений Гамильтона.
- а) В вариационном исчислении и фундаментальных вариационных принципах классической механики важную роль играет следующая система уравнений Эйлера-Лагранжа:

$$\begin{cases} \left(\frac{\partial L}{\partial x} - \frac{d}{dt}\frac{\partial L}{\partial v}\right)(t, x, v) = 0, \\ v = \dot{x}(t), \end{cases}$$

где L(t,x,v) — заданная функция переменных t,x,v, среди которых t обычно является временем, x — координатой, а v — скоростью. Это система двух уравнений на три переменные. Из нее обычно желают найти зависимости x=x(t) и v=v(t), что по существу сводится к отысканию закона движения x=x(t), ибо $v=\dot{x}(t)$.

Запишите подробно первое уравнение системы, раскрыв производную $\frac{d}{dt}$, с учетом того, что x=x(t) и v=v(t).

b) Покажите, что если от переменных t,x,v,L перейти к так называемым каноническим переменным t,x,p,H, сделав преобразование Лежандра

$$\begin{cases} p = \frac{\partial L}{\partial v}, \\ H = pv - L \end{cases}$$

по переменным v, L, заменяя их на переменные p, H, то система Эйлера-Лагранжа приобретет симметричный вид

$$\dot{p} = -\frac{\partial H}{\partial x}, \qquad \dot{x} = \frac{\partial H}{\partial p} .$$

с) В механике чаще всего вместо x и $v=\dot{x}$ используют обозначения q и \dot{q} .

В многомерном случае, когда $L(t,q,\dot{q})=L(t,q^1,\ldots,q^m,\dot{q}^1,\ldots,\dot{q}^m)$ система уравнений Эйлера-Лагранжа имеет вид

$$\left(\frac{\partial L}{\partial q^i} - \frac{d}{dt}\frac{\partial L}{\partial \dot{q}^i}\right)(t, q, \dot{q}) = 0 \quad (i = 1, \dots, m) .$$

Сделав преобразование Лежандра по переменным \dot{q},L , перейдите от переменных t,q,\dot{q},L к каноническим переменным t,q,p,H и покажите, что при этом система уравнений Эйлера-Лагранжа перейдет в следующую систему уравнений Гамильтона

$$\dot{p}_i = -\frac{\partial H}{\partial q^i}, \qquad \dot{q}^i = \frac{\partial H}{\partial p_i} \quad (i = 1, \dots, m) .$$